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AN ITERATED LOGARITHM LAW RESULT
FOR EXTREME VALUES FROM GAUSSIAN SEOUENCES

William P. McCormick

Abstract

2
1-0, EXl—l and

r =EX_.X_ .. Let Z(l) denote the ith maximum of X,,..., X and a =(£n£nn)(2£nn)'l/%
n 1 n+l n 1 n n
b_=(2£nn) 1/2

Let'{xn, n21} be a stationary Gaussian sequence with EX

- (Zn(4w£nn))/(2(2£nn)1/2). Then assuming rn(Znn)2=0(l) the set of
. . (1 -1 (2) -1 (€4)] -
almost sure limit points of the vectors ((Zn -bn)an , (Zn -bn)an ,...(Zn -bn)anH

is determined. The number of components £=£(n)+~ as n»o, This extends a result of

Hebbar.
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1. Introduction

2
1-0, EXl-l and rn_Exlxn+l'

-, Xn that is Zﬁl) equals the n-i+l order

Let {Xn, n2l} be a stationary Gaussian sequence with EX

Let Zﬁl) denote the ith maximum of Xl"'

statistic. Set a = 8/ 28nn  and bn =v/2fnn - £n(4n€nn)/2V/2Enn . In [1 ]

Hebbar considers the set of almost sure limit points of the sequence of vectors

AC IR € I .8 i

{( na L, L.t -L___1, n21}. He shows that under the assumption !

a 3 e ey a
n n n

rn(lnn)2+€ = 0(1) for some £>0 the above sequence has almost sure limit set equal

£
to {(xl,xz,..., xl). OSxts...sx and El xiSI}. In the present paper we strengthen

1

this result in two directions. We relax the condition on T, to rn(Znn)2=0(l) and

further we allow the number £ of extreme values considered to grow to infinity with

(1)
(1) _Zn Pn . oo m
n. Let v s Then we consider the points in R given by (vn se e ey
n

vge),o,n...) where £=£(n) » © as n + «, In R* we consider two modes of conver-

gence--pointwise convergence and £l-convergence. With £(n) suitably bounded we

show that the almost sure limit set in R is given by

1+

e e w e amy

Lo o]
A= {(xl,xz...): 0sx, <X, , i=1,2,..., and g xiSI}

2. Almost sure limit set
I3 x© . . . » 13
We consider two modes of convergence in R , pointwise which is metrized by

oo x_y .
(1% : _; 327" and £1. Let us observe that a point x is a limit
n’n

point of a sequence X with respect to pointwise convergence if and only if for

(1

each fixed £, (xl,..., xL) is a limit point of (xn

seees x££5. Therefore with

regard to pointwise convergence our extension of Hebbar's result is precisely to




weaken the mixing condition on T since finite dimensional results suffice to prove

this case. Furthermore in this case we consider the almost sure limit points of

(1) vﬁz),..., v(n),0,0,...), n21} that is we take £(n)=n.

n °’ n
(1)
n e

the sequence {(v
However when we consider the random element (v

in (1 then we must take into account the rate at which £(n) grows with n. In this

case we prove an iterated logarithm law result with £(n) = [ann]. In the following

we consider the 21 case only since the pointwise convergence case immediately fol-
lows.

The proof closely follows the method in [1] although additional detail is re-
quired to accommodate the infinite dimensional setting. However Lemma 6 in [1]
receives an entirely different proof here that depends on an extension of a result

of Mittal [2].

Remark: Llet x = (xl,xz,...)eA and assume x,>0. Define the following sequences

1
A o 1
A, = [fn(=- 2nk)], s, = ) x., s = ) Sk
k X, S ¢ 1 i’ 1% (assume s<1) and a = [exp(k )1. oOur pro-
SOINE) )
gram will be to show that the sequence (v "7, v:™7,..., v ,0,0...), k21 has x
%% % “ N

as a limit point almost surely. Then since £ < Xk and £ + o as k > » it fol-

lows casily that x is a limit point of (v(l),vézl..., v ,0,0...). In the lem-

% % %
mas which follow it will be assumed that rn(lnn)2=0(l) and that s = ZT xi<1.

Lemma 1. For any €>0 we have
A

Ko .
2. P} Px)>e  and ey
i=1 %k

X5 i=1,..., Xk, i.0.} =0 .
Proof: To establish (2.1) it suffices to prove
(1)

2.2y p{ max(v(i)-xi) > e/kk, min (v

-xi) >0, i.o.} =0.
lsisxk lsisAk

i A R

AUPIRPTRT . ve- . Skt V.o

vﬁz),o,o,...) as a point




Further by Borel Cantelli to establish (2.2) it suffices to show

(2.3) X [)\k max P{V(J) > xj + C/Ak’ V(i) > xi’ ISIS)‘k}] < ®

k lsjsAk % 0‘k
NG () (1) -
Let {(y'"/, y.",..., ¥ ), k=1} be any triangular array with y' ’2 x., l<i<) !
o o o i k ;
k k
and max (yéi)-xi) > e/kk. Let n(i)= b + y(i)aa . Then we establish (2.3) by
1sish %k % % % %

showing that

o (i) (i)
(2.4)  Japizt = ontt,isl, .00, A <@,
k=1 K % o k

rs
Let Zn(l) be the ith maximum of a sample of size n of i.i.d. standard normal

random variables. Then in order to show (2.4) it suffices to show

(2.5) Yoapiz () >l 5 A ) <o and
1 k o k

X

2.6) Tadpiz) s g oy cpzM) D) i ] <
1Ky g k %% % k

In considering (2.5) observe that

p{z;(i) N T T

K o k

< *(1) (1)
(2.7) = P{zOlk > nak }

A
k . . s . wis .
TS R ) B CE VR C 58 I LC N O
i=2 % *x %K *x % *K
Further it can be easily checked that
y(1)

%

(2.8) p{z*(l) > n(l)} - k- Sk + 0(_1__) and
% *




_4-

(2.9) P{z;(l) > DG GRS ()

k N T Ty S T !
1 131 1 ¥
(o= 1 v ) *?'E”ﬁ)
= k 1 k K k1 . 0014
o )
k
1y, ,
%k 1% k
Thus by (2.8) and (2.9) we obtain that (2.7) equals k + 0(=—)
Xk

[+]
Thus since z y(t) > s 4 elgl and sﬁﬂs = X x. <1, (2.5) is established.
1 1!

Next we consider (2.6). First observe that

lpiz" () 5 0 oy oy -z = D) a0y
O ak k ak ak k
* (N
< IpnM <27 oy CpnD gD oy
%k %K % % % %
X (i) (i)
(1) *(1) (i-1) *(i-1) (i) ., (1)

2.1 + [Pin < Z £z ,...,n <z <z ,2Z <n
(210 iEZ %% %% O % Ok M % %

(i-1) G-, L)

% Yooy oy O

- p{n(l) < Z(l) <z

UL S

<> N

+

piz’M 5 2 3 apzM 52}
%% % %% O

where 2z = Z/Znak .
%
1t can be checked that

pizM 52 y-0dy  and
Oy % %

1-1.
(2.11) -2( _})
1+t
* 1) 1
|p{z M,y opzW sz Y <a
o ak o O k
where r_ = sup |r.|. Thus by (2.11) A (P{Z*(]) >z } o+ P(Z(]) >z 1} is sum-
*ogex kT oy ! & %

mahle on k.
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Similarly it is easily checked that 1+2y&i)
)
s
(2.12) lp{z*“) < n(l)} - p{z(l) < n(l)}lk < (CONST.)k k AL
e o o o oy k k

Since s, <1 and vgl)k X >0 for all k, the series in (2.12) is summable.
K Y.
k

Now consider a term of the form

. *(s_ wrs .
[P{ngl) < z;(l) I S nél D ZOL(l L z, Z (1) (1)
K k k k k K %k K
(2.13) - P{nfl) < zél) Sz, nél'l) < zél'l) sz, z(1) ¢ ni’)}l
b k K k k k Ok k
-- * - ;
<8 = ) IP{n(l) SXE oSz, n-b X, Sz, X < nf‘)
ti,eent Lk 1 % o i-1 % 'k
for all t # t,,..., t, ., lstsuk}l
* *
where {Xl,X7,...} denotes an i.i.d. sequence of standard normal random variables
and where the summation is over all 1 < tl,..., ti-l < uk and tu # tV of u # v. ;
Let 0<8<1 be fixed and to be specified later. We write !
!
i

0 1 e i-2

where Su denotes the sum over all tl,..., ti-l such that when the t's are ordered

j - . B
» t(l) <...< t(i—l) there are exactly u indices h where t(h+1) - t(h) <o

Consider SO' We have

B S Y

i
!
1
{
h
!

IP{néi) < le < zak,..., n(i'l) < X:i-l < zak, X: < né:). t#tl,..., t 4 and]st<vk1
- P{ngi) < xtl < zak,..., néi'l) < Xti-l < zak, X, < ngi),t#tl,..., t. ;and l<t'wkH
< (Const.) (T, + OSU#ESI_I Ty

where T, = Eg?l |r|¢(n§i),ﬂé:), [r])
. P{nél) <CXKp €T ey n{i-1) ¢ x <z |x ) x =nlihy

k ] K Y il %S Ty

. o ) R e Tyt cotmth ol T aatiiSabme g | iinden
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where T rs’t and X(O) is summation over all s # t and s,t # tl,..., ti—l’ ISS,tsak

and where ¢(°*,*,r) denotes the bivariate normal density with zero means, unit vari-

ances and correlation r. Further for v>0,

(0,v) . ;}
Ty y = § lrl¢(n§1), M e
’ s k %%
. P{n(l) <X, <z ,..., n(V'l) < X <z , n(V+1) <X <z ;
O 1 % O tvar % % tval X%
(i-1) 8] - (1)
. n < X <Z|X =n , X =n }
0Lk ti-l o tv %% S %%

i <s< =
where the sum is over s # tl,..., ti—l and l.s_ak and r

rstv.
Tu 0 is defined in exactly the same way and finally for u,v>0

Ty - ir|¢cn§:), ng:>, )

(1 (u-1) (us+l)

P{n <X, €Z ,..., M < X <z ,n < X <z
Ok tl OLk O 1"u-l 0Lk % tu+1 o"k
] n(v-l) < X <z (v+1) < Xt <z

O tya % n“k vel %

NETR) .

o ¢ < zmk = n(“), X = n(v)}.
i-1

Xy T ot K, T My

We will give details only for the sum TO since the other sums are handled in

the same way. For TO first consider the case when

. . . 6
(2.14) mln{ls-tul, lt-tul, usl,..., i-1} > o

In evaluating To we need to evaluate

n(i'l) < X

(2.15) p(n;i) sX, 52 sz |x_ =nD, x =Dy

1 % % i % S Tt




when

0

(h) > uk, h=1,..., 1-2

(2.16) -t

then)
and (2.14) hold. Now subject to (2.14) we have that

/2

_ (1) NG N -3
(2.17) E(Xt.IXS =n Y, X = ”ak ) = 0((£nay) ) and

(s My e
CORR(X, , X, [X_,X) = r + 0(Cena) ™)
v

u tu’tv

Therefore by (2.17) the probability in (2.15) is at most

(2.18) P{né:) - c(tnak)‘3/2 < xtu <z c(znak)‘s/z, =1,..., i-1)

for some constant ¢ not depending on k. Conditioning on Xt yields that (2.18) is
1

at most
~ - 2 - 2 .
(1-8(b_ (1-c)))P{b (1-ct)“ <= X, <z (l-cm”, wu=2,..., i-1}
b % tu % ;
where T = T . ‘
Oy ‘
Iterating the procedure yields that (2.18) is at most

2.19) it [1-0(b, (1-cD)"]
u=1 k

Finally since isxk = [Kn(%?ka] and (l-c?)u 21 - ZAkc?; (2.19) is at most
1

£nk (i-1)

(2.20) [1-8(b -c—=" )

¢ is some constant.

In the same way it can be checked that if for some Ugs |s—tu | < ai but
0

It-tul > az, u=1,..., i-1 or the same case with s and t interchanged then (2.15)

is at most

£nk (i-2)

(2:2) - (1-0010, ) (1800 -¢ === 57
“x




where v > 0,

. . 8 S
And finally if both |s—tu | < ay and lt-tV | < o for some u, and Vo then (2.15)

Q

0 0
is at most
2 £nk (i-3)
(2.22) (1-0(yb_ )) " [1-8(b ¢ ——=73)]
Oy % (Znak)3 2

Thus we have that provided (2.16) holds

(CONST.) £nk (i-1) (CONST.) ]
(2.23) T, < ] [1-9(b_ -c 31 = )
0 , (1) o 3/2 (1) (1-1)
(lﬂak)(zyak +1) k (Znak) (Knak)(Zyak +1) ak
Similarly if (2.16) holds we find
. (CONST.) 1
(i) T < . —
0,v (y§;)+y§:j+1) aél 1)
(Knak)
. . (CONST .) 1
(2260 G0 Ty 0 ¢ OO e
U.k '(lk OLk
(£noy )
s (CONST.) 1
(iii) Tu,v < (yrﬁj+y(V7+n oD
o Yo D%
(£noy)
Thus by (2.23) and (2.24)
(CONST.) (z“zk)z (i-1) 1
(2.25) S < =y a7 ) * Twe
G.k K 1

for some e > 0.
Next consider Sh' For simplicity let us consider a summand in (2.13) when

tl<t2<...< ti-l and




(2.26) 0 < t2 - tl’ t3 - tz,..., tn+1 - tn < ag and tu+1 - tu > as uzh+l,..., i-1.
Then

IP{né;) < x:1 < zak,..., ngi'l) < x:i-l <z, X< n;i)
for all tét,,..., t. ., lstSak}

- P{néi)s xt1 < zak,..., néi'l) S xti-l <z, X, o< néi)

for all t#tl,..., t lstsak}l

where the Tu v have the same meaning as before except now condition (2.26) holds.

»

Consider TO. We need to evaluate

Ping) <Xy <z e nUT excnpxg = alDx = ()

ty T Ty i-1 ; %t

Suppose that (2.14) holds. Then the above conditional probability is at most the

expression given at (2.18). Therefore let us consider

.27y P <X <z, wel,..., i-1)

*x Y %
subject to condition (2.26).

Let K = K(oy) = [expo/Znak)]. Suppose that in addition to (2.26) we have that

(2.28) t, -t ,..., t -t <K, and K < t

2 " 4o -t

t. -t

+2 mel? T T i-2 ¢

Then given (2.26) and (2.28), (2.27) equals at most
m h i=2

T (1-¢(b_ (1- F)N)+ T (1-0(b. (1-cT)%)- T (1-8(b_ (1-cT DY)
u=0 %% 1 u=m+1 %% K u=h+1 % ag

< (consr.)a;Q

E i




-10-

_ m+l m+l . - - _ -
where Q = 1 + 61 - 61 + (h-m)GK + (i-2-h) and 61 1 - cry, 5K =1 - ery

where ¢ is some constant and without loss of generality we can assume c;l <1
because if necessary we can work with the sequence {an, n21} where m is some
fixed integer.

Then as before we find that

. (CONST.) 1
(i) T, <
0 2y o

ak k

(£nay )

(CONST.) _
u,0 (y(u)+y§1)+1)
k

1A

(2.29) (31) T

xﬁol“

(lnak)

and

(CONST.)
Vv (ytW w(ﬂ +1)

& "%

IA

(iii) Tu

zﬁol“

(£noy )

Thus by the inequalities in (2.29) we have that

2
h (£n_k)
(CONST.) 2
= Z ( Q ) ( 1+2xi

m=0 Qk

Sh )(aéi-h-1+6(h-m)]xm)

s
X k
from which it can be easily checked that
(2.30) s < aif for some f > 0 not depending on h.

Finally from (2.25) and (2.30) we have that

g < (CONST.)

k1+e

k=21 for some e > 0 .

Hence (2.6) holds completing the proof of lemma 1.

b
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(i) =b +

Lemma 2. Let ¢ x.a_ . Then
—_— n n in

2.31) piztD) 5 Do, A 0} =1
@ Ty k

Proof: Let Bk = [1/2 ak] and let Ea(l) be the ith maximum of the random variables

k
)
X see0s X . Let z be as in Lemma 1 and define I, = I N ra .
o By % & kin Mg, g
k% %
Let Jn = s Ik where 0<a<l is a fixed real number. Then to show (2.31) it suf-
a
k=[n"]

fices to show
(i) EJn +© as n-+ > and
(2.32)

(ii) Jn/EJn 14 1 as n—>oe,

The proof of (2.32) follows the method of proof of Lemma 3 in [1] with changes

similar to those in our Lemma 1. Therefore the details of this proof will be

omitted.
(1) )
Remark: The sequence (v serey V »0,0...) has x as an almost sure limit point.
% !
A . .
To see this let Nn = {w: zlk (VS;)-xi) > 1/n, véi) > x_, i=1,..., Xk i.o.} and
1
N = ngl N. Let A= {w: vcl) > X i=1,..., kk i.0.} and A = AnN®. It is easy
(D Oy
to check that if wea, then (v (w),..., Vv (w),0,0...) has x as a limit point
%% %
and by Lemmas 1 and 2 P(A) = 1. Therefore by the Remark preceding Lemma 1, we have
(D (Lo )
that x is an almost sure limit point of (v seessy V , 0,0,...).

%

Lemma 3. Let x = (x,,X,,...) be any point in R” with 0sx, <x., i=1,2,... and
= 1°72 i+1™ 1 2
(1 n

n 2V ,0,0..)

YT xi>1. Then x cannot be an a.s. limit point of the sequence (v n

L IR




Proof: Let m be such that Sm

% x, > 1, and x_ > 0.
11 m

v

i=1,..., m. Then since 2? z, 1, it follows as in [ 1] that

piviPs 2, i=1,..., m i.0.} = 0. Let N=fu: v{D> . vi™s 2, il

1°°° n

Then if w € Nc, X cannot be a limit point of (vgl),..., vﬁfﬁ,o,o,...) because for
all n sufficiently large

£(n) .
(1) : =
Yolv Y exgl 2 IZ;Em (x;-2.) = (

s_+1

) x

m
2s m
m

A useful uniform bound on the tail probabilities of the normalized maxima for
a Gaussian sequence is provided by Lemma 1 in [2]. We state a version of this re-

sult which is suited to our problem.

Lemma 4. Let cn = V2fnn . Let {Xk n}’ k=1,...,n, n=1,2,... be a triangular array
e »

of standard normal random variables. Then setting rn(i,j) = EXi nxj n’
M = max X and §_(x) = sup |r (i,j)| we have
1<ksn Ko7 n i-jlax "

a2,
e P{cn(Mn-bn) < -A} =0(1) as A+
uniformly in n for all t in a neighborhood of zero provided

(i) Tim én(l) <1
>

(ii) Gn(na)lnn = 0(1) for some fixed O<oa<l.

Lemma 5. For any fixed positive integer £ and € > 0, P{Z(L) < bn - €a_, i.o.} = 0.

n
It is easily checked that it is sufficient to show P{Z(t) <b - ean , i.0.}=0.
Tyl kel
Also since for k sufficiently large bn - €a < bn - €/2 a it is enough to
| kel kel k k
show

¢4
(2.33) p{z <b -g£a ,1i.0.} =0.
nk l'lk

i
|
!
T
!
|
¢
|
|




Observe that
P{Z(l) <b -€alts P{Z(l) >b_ + 2a }
n n n ““n n n
(2.34)
£ . .
+ ) P{Z(l) <b_ -€ga_ < 2(3-1) 2(1) . b + 2a}
N n n n n n n n
i=2
Now

]
(£nn)

(2.35) p{zﬁl) > b +2a} < n(1-8(b_+ 2a)) =

Further we have that

Pz b —ea <20 Dy, 0
n n n n n n

n
(2.36)
= 2 P{Xj < bn - € an, J#tl,..., ti-l’ 1<j<n
t,,...,L.
1 i-1
and b -e€a <X <b +2a,u=l,..., i-1}
n n t, n n

For a fixed 0<6<1 and n sufficiently large

P{xj sb -ea, jft,..., t,_y» 15isn
and
b -€a < X, < b +2a,usl,..., i-1}
u
b _+2a b +2a
nI n nI n ’ | | 5
< ce PIX, £b_-€a, |j-t | >n
b -ca_ b_-ca ;] n n u ’
n°n n n
(237 ywon,..., a0, 1sjsnlX, = x, u=1,..., i-1}
u

dr{x_ edx_ ,..., X edx. ,}
tl 1 ti—l i-1

~ . 0 . .
< P{xj <b -€/2a, IJ-tu|>n , u=l,..., i-1, 1sjsn}

P{bn -ea s Xt b+ Zan, usl,.,., i-1}

u

e o ——iAan

e e g e e e




+ 0(;26).
n

where CORR(Xj,Xk) = rjk

fet 1 <t seves T < n be chosen to maximize
1,n i-1,n

. 5] . .
P{ij <b - /2 a_, l)~tul >n, u=sl,..., i-1, 1sj<n}

~ . 8 . . . .
Let Yl,mYZ,m"'Ym,m represent the Xj, l]-tul >n , u=l,..., i-1, 1<jsn in their
natural order and let M = max Yk' Note n - 2(i-1)ne < m< n. Then the sum in
1<k<m
(2.36) is at most
(2.38) P(M_<b -€e/dal- ) Plo - ea <X <b +2,usl,...,i-l}
tl""’ti-—l u

Kom satisfy the hypothesis of Lemma 4. Hence i

-c(ﬂnlnn)2

It is easily checked that the Y
(2.39) P{Mm <b -¢e/4 am} <e

for some constant c > 0 not depending on n.
Further if min{ltu-tvlz 1gu<vsgi-1} 2 ne, then following the approach in Lemma 1 E

one c¢an check that

‘ _ . . i-1
p{bn -ea sX <b + 2a_, u=l,..., i-1} < (1-0(b_-ica ))

g e e

t
u
(2.40)
- (1/n elelnlnn)1-l %
While if there are exactly h indices say Upseees Uy such that when the t's are i
8 8 |
ordered t -t <n,..., t -t < n then
(u+1) " “up) CREVIRICR

P{bn -ea sX < bn +2a, usl,..., i-1}

t
u

< (1-¢(bnc))h(1-¢(bn-iean))i'h'l

where 0<§<1 is some constant not depending on n

2 . .2
(2.41) s (ymhé +i-h-1 el (£nlnn)

Therefore by choosing 6 < 62 we have by (2.39), (2.40) and (2.41) that (2.38)

2
is at most e-c(tnlnn) for some ¢ > 0. Therefore by (2.34), (2.35) and the above

B P . T .
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we see that

piz® <b -ea} <1t
n n n (lnn)z

Since this series evaluated at the n is summable on k, (2.33) holds completing

the proof of Lemma 5.

Theorem 1. Under the assumptions of Lemma 1 the almost sure limit points of

the sequence (v(l) , Vﬁzn),O,O,-

SRR ..) in Ll coincide with the set

o
A= {(xl,xz,...): 0sx,0 X%, i=1,2,..., g X, < 1}

Proof: Lemmas 1 and 2 establish that each point of A is an almost sure limit
point while Lemmas 3 and 5 establish that no point in AS can be an almost sure

limit point.
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